Regional warming from aerosol removal over the United States: Results from a transient 2010-2050 climate simulation

نویسندگان

  • L. J. Mickley
  • D. Rind
چکیده

We use a general circulation model (NASA Goddard Institute for Space Studies GCM 3) to investigate the regional climate response to removal of aerosols over the United States. We perform a pair of transient 2010e2050 climate simulations following a scenario of increasing greenhouse gas concentrations, with and without aerosols over the United States and with present-day aerosols elsewhere. We find that removing U.S. aerosol significantly enhances the warming from greenhouse gases in a spatial pattern that strongly correlates with that of the aerosol. Warming is nearly negligible outside the United States, but annual mean surface temperatures increase by 0.4e0.6 K in the eastern United States. Temperatures during summer heat waves in the Northeast rise by as much as 1e2 K due to aerosol removal, driven in part by positive feedbacks involving soil moisture and low cloud cover. Reducing U.S. aerosol sources to achieve air quality objectives could thus have significant unintended regional warming consequences. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response

We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from U...

متن کامل

Regional climate model downscaling of the U.S. summer climate and future change

[1] A mesoscale model (MM5)–based regional climate model (CMM5) integration driven by the Parallel Climate Model (PCM), a fully coupled atmosphere-ocean-land-ice general circulation model (GCM), for the present (1986–1995) summer season climate is first compared with observations to study the CMM5’s downscaling skill and uncertainty over the United States. The results indicate that the CMM5, wi...

متن کامل

Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants

[1] This study examines the impact of projected changes (A1B ‘‘marker’’ scenario) in emissions of four short-lived air pollutants (ozone, black carbon, organic carbon, and sulfate) on future climate. Through year 2030, simulated climate is only weakly dependent on the projected levels of short-lived air pollutants, primarily the result of a near cancellation of their global net radiative forcin...

متن کامل

Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) ...

متن کامل

Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols

28 We use the GEOS-Chem chemical transport model combined with the GISS general 29 circulation model to calculate the aerosol direct and indirect (warm cloud) radiative 30 forcings from US anthropogenic sources over the 1950-2050 period, based on historical 31 emission inventories and future projections from the IPCC A1B scenario. The aerosol 32 simulation is evaluated with observed spatial dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011